Taxes and tariffs have resurfaced in the last few months and are at the forefront of the nation’s attention. Rumors of trade wars and threats of economic sanctions fly around the globe faster than Garfield can devour a lasagna. Historically, governments have used taxes and tariffs to stimulate or throttle markets to achieve a desired economic state of balance.
But in the last few decades since economies have become more globalized and data collection efforts have expanded and improved, more detailed economic data has become available and our understanding of how these economic and political tools affect the world has changed. If you’re interested in modeling or exploring how taxes or tariffs might affect your area or industry, then read on for our economists’ top-level advice and tips for modeling and communicating the effects of taxes and tariffs.
When it comes to any economic impact analysis, the elephant in the room is that there’s no vacuum sealed bell jar in which to isolate and experiment with economic phenomena. It’s worthwhile, then, to include as many mitigations—however seemingly obvious—to lay the groundwork for the analysis. So let’s split the elephant into two categories:
Gathering as much historical evidence for how industries and markets respond to stimuli similar to what you’re trying to model can provide an informative gut-check for the results the model will provide as well as shape the nature of your inputs and other factors that should be taken into consideration as part of your analysis or report.
Beside making great historians, economists are ardent researchers. The myriad online resources and libraries of published studies may just have enough to help set a historical and academic context for the particular tax or industry you’re modeling. Rather than try to wrap our arms around that whole world of research, here’s a look at some of our favourite sources:
Whether inherent in the model or made by the researcher, all assumptions ought to make appearances in the methodology section of your study. For taxes and tariffs, one of the safest things to assume is a cost increase rather than a change in production technology (this is specific to a tax increase, as opposed to a tax cut).
For example, let’s assume it’s a final good, like cars, on which we want to model the effect of a price increase due to a tax or tariff. The simplest way to model this would be to run a negative household spending pattern under the assumption that consumers will still buy the cars, but therefore will have less money to spend on other things. The weakness with this approach, however, is that consumers may forego the purchase of a new car and instead spend more on vehicle repair and maintenance, or purchase a brand or model not subject to the tax. While households could drain down savings or use a loan to cover the higher cost, we’re assuming here that such measure would cause the household to reduce expenditures sometime in the future; in other words, such measures are merely postponing the necessary reductions in expenditures.
If we know that the tax or tariff is applied to an intermediate good like aluminum (rather than cars), the simplest method would be to run the analysis as a negative industry change in the industry or industries that purchase the commodity. However, some research into historical business practices for the industry might show that businesses can eat the cost, cut back on labor or planned investments in machinery, or switch to alternative inputs. Each of these can be modeled using specific techniques, but the set of assumptions you make about industry behavior can drastically affect the results of the analysis.
I-Os or CGEs should be used as tools, not an end in themselves or as black boxes providing the answers (Community Economics, page 303). No matter which model you use, the results will only ever be as good as the assumptions and inputs which you bring to the table.
One significant caveat if you’re looking for a tie-breaker between CGE and I-O is that I-O has wider sectorial detail. Community Economics, again, explains it thus:
Most CGEs, on the other hand, have only a small number of sectors, such as agriculture, durable and nondurable manufacturing, trade, services, and maybe government [compared to IMPLAN’s 536 sectors, 9 household income types, and 5 government levels]. CGE models that tend to have more than just the basic sectors can become computationally complex in very short order. Remember that the CGE must be able to replicate the benchmark data as well as provide reasonable simulations. Because most CGE models work with only a handful of sectors, to keep the model tractable they tend to be subject to aggregation bias. One of the central purposes of building regional models is to explore how different sectors of the economy respond to shocks or policy changes. Clearly different sectors will respond differently, sometimes significantly different. Aggregation bias is the treatment of dissimilar sectors as being the same.
There’s a natural but tricky inflection point between presenting your results and trying to help the uninitiated or lay person understand the scope of the problem. Here are a few things that the best studies use to help all interested parties grasp the nature of your results:
No matter the geography, industry, tax, or tariff, modeling the economic effects of a change in policy or anticipated market behavior is never cut-and-dry. However, armed with the clearest perspective on an issue, with enough information to make reasonable assumptions, and with the right tools, you can help others understand or appreciate the shape of the issue rather than having to rely on first impressions or glittering generalities. Economic impact analysis can help us understand how taxes and tariffs might affect us—whether as a country as a whole or just in our own pockets.